
BigData & NoSQL DBMSs

Tecnologie delle Basi di Dati M

lucidi a cura del prof. Torlone (univ. Roma3)

Big data? Why? Why not just data?

● Well, because they are:
1. Big

• “The greater the struggle, the more glorious the triumph.” (Butterfly Circus)

2. Necessary

• “It is a capital mistake to theorize before one has data.” (S. Holmes)

3. Fashionable

• “I always wanted to be fashionable.” (J. Malkovich)

4. Profitable

• “Data is a precious thing and will last longer than the systems themselves.”
(T. Berners-Lee)

5. Exciting

• “The most exciting phrase to hear in science, is not ‘Eureka!’,
but ‘That's funny’…” (I. Asimov)

Tecnologie delle Basi di Dati M 2 BigData & NoSQL

Goals

● Show state-of-the-art techniques for dealing with collections
of unstructured data whose size exceeds the capacity of
storage, management, and analysis typical for traditional
(relational) database systems

● In particular:
Requirements for modern applications

Problems with big data

Available hardware/software solutions

BigData & NoSQL Tecnologie delle Basi di Dati M 3

Roadmap

● Introduction
• Terminology, principal characteristics, and application samples

● Storing Big Data
• Hadoop & Map-reduce

• Cloud computing

• NoSQL DBMS

● …but there’s more!
• Big data computing (high-level tools like Pig/Hive)

• Big data analysis (technologies like Mahout/Open R)

• Applications (Semantic web/open data/social networks/genomic data)

● simply not enough time…

BigData & NoSQL Tecnologie delle Basi di Dati M 4

Big Data? Different definitions!

● “Big data exceeds the reach of commonly used hardware
environments and software tools to capture, manage, and
process it with in a tolerable elapsed time for its user
population.” (Teradata Magazine article, 2011)

● “Big data refers to data sets whose size is beyond the ability of
typical database software tools to capture, store, manage and
analyze.” (The McKinsey Global Institute, 2012)

● “Big data is a term for data sets that are so large or complex
that traditional data processing applications are inadequate.”
(Wikipedia, 2016)

BigData & NoSQL Tecnologie delle Basi di Dati M 5

When data become “Big”?

BigData & NoSQL Tecnologie delle Basi di Dati M 6

IOPS: Input/Output Operations Per Second

Normal
processing
capability

IOPS
BIG

DATA

Data volume

Some numbers

● How many data in the world?
• 800 Terabytes, 2000

• 160 Exabytes, 2006 (1EB = 1018B)

• 500 Exabytes, 2009

• 2.7 Zettabytes, 2012 (1ZB = 1021B)

• 35 Zettabytes by 2020

● How much is a zettabyte?
• 1,000,000,000,000,000,000,000 bytes

• A stack of 1TB hard disks that is 25,400 km high

● How many data in a day?
• 7 TB, Twitter

• 10 TB, Facebook

● 90% of world's data:
• generated over last two years!

BigData & NoSQL Tecnologie delle Basi di Dati M 7

The three "V’s" of Big Data

● Not just a matter of volume…

BigData & NoSQL Tecnologie delle Basi di Dati M 8

What is more important?

● The “Big”

● The “Data”

● Both

● Neither

What organizations do with big data

"Data is not information,
information is not knowledge,

knowledge is not understanding,
understanding is not wisdom"

(Cliff Stoll)

 BigData & NoSQL Tecnologie delle Basi di Dati M 9

Big Data: V3+VALUE

● Volume: Gigabyte(109), Terabyte(1012), Petabyte(1015),
Exabyte(1018), Zettabyte (1021)

● Variety: Structured, semi-structured, unstructured; Text, image,
audio, video, record

● Velocity: Periodic, Near Real Time, Real Time

● Value: they can generate huge competitive advantages!

BigData & NoSQL Tecnologie delle Basi di Dati M 10

What’s new?

● The wide availability of data allows us to apply more
sophisticated models and you get much more accurate results
than in the past!

“It is a capital mistake to theorize before one has data.”

Sherlock Holmes

“Big data is mostly about taking numbers
and using those numbers to make predictions about the future.

The bigger the data set you have, the more accurate
the predictions about the future will be.”

Anthony Goldbloom

BigData & NoSQL Tecnologie delle Basi di Dati M 11

Bigger = Smarter?

● Yes!
• tolerate errors

• discover the “long tail” and “corner cases”

• algorithms work much better

● BUT:
• more heterogeneity

• data grows faster than energy on chip

• still need humans to ask right questions

BigData & NoSQL Tecnologie delle Basi di Dati M 12

“We sold more books today that
didn’t sell at all yesterday than we
sold today of all the books that did
sell yesterday” (Amazon employee)

The risks of Big Data

● Data grows faster than energy on chip
• Efficiency

• Effectiveness

• Scalability

● Costs

● Privacy

BigData & NoSQL Tecnologie delle Basi di Dati M 13

Big Data in action

14

Acquisition

Extraction

Integration

Analysis

Interpretation

Decision

Goal:

to make effective
strategic decisions
exploiting the
availability of big
data

BigData & NoSQL Tecnologie delle Basi di Dati M

Big Data in action

15

Requires:

 selection

 filtering

 metadata
generation

 managing
provenance

Acquisition

Extraction

Integration

Analysis

Interpretation

Decision

BigData & NoSQL Tecnologie delle Basi di Dati M

Big Data in action

16

Requires:

 transformation

 normalization

 cleaning

 aggregation

 error handling

Acquisition

Extraction

Integration

Analysis

Interpretation

Decision

BigData & NoSQL Tecnologie delle Basi di Dati M

Big Data in action

17

Requires:

 standardization

 conflict
management

 reconciliation

 mapping
definition

Acquisition

Extraction

Integration

Analysis

Interpretation

Decision

BigData & NoSQL Tecnologie delle Basi di Dati M

Big Data in action

18

Requires:

 exploration

 data mining

 machine
learning

 visualization

Acquisition

Extraction

Integration

Analysis

Interpretation

Decision

BigData & NoSQL Tecnologie delle Basi di Dati M

Big Data in action

19

Requires:

 knowledge
of the domain

 knowledge of
the provenance

 identification
of patterns
of interest

 flexibility
of the process

Acquisition

Extraction

Integration

Analysis

Interpretation

Decision

BigData & NoSQL Tecnologie delle Basi di Dati M

Big Data in action

20

Requires:

 managerial skills

 continuous
improvement
of the process

Acquisition

Extraction

Integration

Analysis

Interpretation

Decision

BigData & NoSQL Tecnologie delle Basi di Dati M

Challenges

21

● Performance, performance, performance!

● Scalability

● Heterogeneity

● Effectiveness

● Flexibility

● Privacy

● Property

● Human collaboration

BigData & NoSQL Tecnologie delle Basi di Dati M

22

ETL

Real Time

Streams

Distributed file system (HDFS)

NoSQL
(HBase,

Cassandra,

MongoDB)

Big SQL
(Oracle,

InfoSphere,

Teradata)

Real-Time

Processing

OLAP

Analytics
(Vertica,

Penthao,

Greenplum)

Near

Real-Time

Processing

The Big Data flow

The Big Data Landscape

23 BigData & NoSQL Tecnologie delle Basi di Dati M

Distribution of resources and services

24

● Distributed Architecture
• Clusters of computers that work together to a common goal

• Scale out not up!

● Fault-tolerance
• Resource replication

• Eventual consistency

● Distributed processing
• Shared-nothing model

• Map-Reduce paradigm

BigData & NoSQL Tecnologie delle Basi di Dati M

Technology: Hadoop & MapReduce

● What is Hadoop?
An open-source software framework (Apache project)

Originally developed by Yahoo!

● Goal: storage and processing of data-sets at massive scale

● Infrastructure: clusters of commodity hardware

● Core:
HDFS, a distributed file system

MapReduce, a programming model for large scale data processing

● Includes a number of related projects
Apache Pig, Apache Hive, Apache HBase, etc..

● Used in production by Google, Facebook, Yahoo! and many others

25 BigData & NoSQL Tecnologie delle Basi di Dati M

The core of Hadoop

● HDFS
A distributed file systems

Servers can fail and not abort the computation process

Data is replicated with redundancy across the cluster

● MapReduce
Programming paradigm for expressing distributed computations
over multiple servers

The powerhouse behind most of today’s big data processing

Also used in other MPP environments and NoSQL databases (e.g.,
Vertica and MongoDB)

● Improving programmability: Pig and Hive

● Improving data access: HBase, Sqoop, and Flume

26 BigData & NoSQL Tecnologie delle Basi di Dati M

Hadoop: some History

● 2003: Google publishes about its cluster architecture & distributed file system (GFS)

● 2004: Google publishes about its MapReduce programming model used
on top of GFS

written in C++

closed-source, Python and Java APIs available to Google programmers only

● 2006: Apache & Yahoo! Hadoop & HDFS (Doug Cutting and Mike Cafarella)
open-source, Java implementations of Google MapReduce and GFS

a diverse set of APIs available to public

● 2008: becomes an independent Apache project
Yahoo! uses Hadoop in production

● Today: used as a general-purpose storage and analysis platform for big data
other Hadoop distributions from several vendors including EMC, IBM, Microsoft,
Oracle, Cloudera, etc.

many users (http://wiki.apache.org/hadoop/PoweredBy)

research and development actively continues…

27 BigData & NoSQL Tecnologie delle Basi di Dati M

What is MapReduce?

● Programming model for expressing distributed computations at a massive
scale

● Execution framework for organizing and performing such computations
running the various tasks in parallel

providing for redundancy and fault tolerance

● Inspired by the map and reduce functions commonly used in functional
programming

● Various implementations:
Google

Hadoop

…

● Google has been granted a patent on MapReduce

28 BigData & NoSQL Tecnologie delle Basi di Dati M

The good news

● “More data usually beats better algorithms!”
Anand Rajaman (about the Netflix Challenge)
But also: Alon Halevy, Peter Norvig,
Fernando Pereira, ...

29 BigData & NoSQL Tecnologie delle Basi di Dati M

The bad news

● The storage capacities of hard drives have increased
massively over the years

● But access speeds have not kept up:

year: 1990
size: ~1.3GB

speed: 4.4 MB/s

year: 2011
size: ~1TB

speed: 100 MB/s

5 mins 2.5 hours!

30 BigData & NoSQL Tecnologie delle Basi di Dati M

Today: cluster computing

● 100 hard disks? 2 mins to read 1TB

● What about disk failures?

● Replication (RAID) ... or

31 BigData & NoSQL Tecnologie delle Basi di Dati M

Scale up

32 BigData & NoSQL Tecnologie delle Basi di Dati M

Scale out

33 BigData & NoSQL Tecnologie delle Basi di Dati M

Scale up vs scale out

34 BigData & NoSQL Tecnologie delle Basi di Dati M

Cluster computing

● Compute nodes are stored on racks
8–64 compute nodes on a rack

● There can be many racks of compute nodes

● The nodes on a single rack are connected
by a network

typically gigabit Ethernet

● Racks are connected by another level of network or a switch

● The bandwidth of intra-rack communication is usually much greater than
that of inter-rack communication

● Compute nodes can fail! Solution:
Files are stored redundantly

Computations are divided into tasks

35 BigData & NoSQL Tecnologie delle Basi di Dati M

Commodity hardware

● You are not tied to expensive, proprietary offerings from a single vendor

● You can choose standardized, commonly available hardware from any of a
large range of vendors to build your cluster

● Commodity ≠ Low-end!
cheap components with high failure rate can be a false economy

but expensive database class machines do not score well on the
price/performance curve

● Example typical specifications of commodity hardware:
Processor 2 quad-core 2-2.5GHz CPUs

Memory 16-24 GB ECC RAM

Storage 4 × 1TB SATA disks

Network Gigabit Ethernet

● Yahoo! has a huge installation of Hadoop:
> 100,000 CPUs in > 36,000 computers

Used to support research for Ad Systems and Web Search

Also used to do scaling tests to support development of Hadoop

36 BigData & NoSQL Tecnologie delle Basi di Dati M

The New Software Stack

● New programming environments designed to get their parallelism not from
a supercomputer but from computing clusters

● Bottom of the stack: distributed file system (DFS)

● On the top of a DFS:
many different high-level programming systems

We have a winner!

MapReduce

37 BigData & NoSQL Tecnologie delle Basi di Dati M

DFS: Assumptions

● Commodity hardware
Scale “out”, not “up”

● Significant failure rates
Nodes can fail over time

● “Modest” number of huge files
Multi-gigabyte files are common, if not encouraged

● Files are write-once, mostly appended to
Perhaps concurrently

● Large streaming reads over random access
High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

38 BigData & NoSQL Tecnologie delle Basi di Dati M

DFS: organization

● Files are divided into chunks
typically 64 megabytes in size

● Chunks are replicated at different compute nodes (usually 3+)

● Nodes holding copies of one chunk are located on different racks

● Chunk size and the degree of replication can be decided by the user

● A special file (the master node) stores, for each file, the positions of its
chunks

● The master node is itself replicated

● A directory for the file system knows where to find the master node

● The directory itself can be replicated

● All participants using the DFS know where the directory copies are

39 BigData & NoSQL Tecnologie delle Basi di Dati M

DFS implementations

● Several distributed file systems used in practice

● Among these:
The Google File System (GFS), the original of the class

CloudStore, an open-source DFS originally developed by Kosmix

Hadoop Distributed File System (HDFS), an open-source DFS used with
Hadoop

Master node = Namenode

Compute node = Datanode

Node: both physical and logical entity

40 BigData & NoSQL Tecnologie delle Basi di Dati M

HDFS concepts

● An HDFS cluster has two types of nodes:
Multiple DataNodes

The NameNode

41 BigData & NoSQL Tecnologie delle Basi di Dati M

HDFS concepts

● The datanodes just store and retrieve the blocks when they are told to
(by clients or the namenode)

● The namenode:
Manages the filesystem tree and the metadata for all the files
and directories

Knows the datanodes on which all the blocks for a given file are located

● Without the namenode HDFS cannot be used

● It is important to make the namenode resilient to failure

42 BigData & NoSQL Tecnologie delle Basi di Dati M

HDFS I/O

● An application client wishing to read a file (or a portion thereof) must first
contact the namenode to determine where the actual data is stored

● In response to the client request the namenode returns:
the relevant block id

the location where the block is held (i.e., which datanode)

● The client then contacts the datanode to retrieve the data.

● Blocks are themselves stored on standard single-machine file systems
HDFS lies on top of the standard OS stack

● Important feature of the design:
data is never moved through the namenode

all data transfer occurs directly between clients and datanodes

communications with the namenode only involves transfer of metadata

43 BigData & NoSQL Tecnologie delle Basi di Dati M

Namenode Responsibilities

● Managing the file system namespace:
Holds file/directory structure, metadata, file-to-block mapping, access
permissions, etc.

● Coordinating file operations:
Directs clients to datanodes for reads and writes

No data is moved through the namenode

● Maintaining overall health:
Periodic communication with the datanodes

Block re-replication and rebalancing

Garbage collection

44 BigData & NoSQL Tecnologie delle Basi di Dati M

Distributed computing

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Divide

Conquer

45 BigData & NoSQL Tecnologie delle Basi di Dati M

Parallelization Challenges

● How do we assign work units to workers?

● What if we have more work units than workers?

● What if workers need to share partial results?

● How do we aggregate partial results?

● How do we know all the workers have finished?

● What if workers die?

What is the risk of all of these problems?

46 BigData & NoSQL Tecnologie delle Basi di Dati M

Source: Ricardo Guimarães Herrmann

47

Risk?

● A lot: for instance, deadlock and starvation

● Parallelization problems arise from:
Communication between workers (e.g., to exchange state)

Access to shared resources (e.g., data)

● Thus, we need a synchronization mechanism

48 BigData & NoSQL Tecnologie delle Basi di Dati M

Current approaches

● Programming models
Shared memory (pthreads)

Shared nothing (Message passing)

Master-slaves

Producer-consumer flows

Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
e

m
o

ry

master

slaves

producer consumer

producer consumer

work queue

49 BigData & NoSQL Tecnologie delle Basi di Dati M

So, what?

● Concurrency is difficult to reason about

● Concurrency is even more difficult to reason about
At the scale of datacenters (even across datacenters)

In the presence of failures

In terms of multiple interacting services

● Not to mention debugging…

● The reality:
Lots of one-off solutions, custom code

Write you own dedicated library, then program with it

Burden on the programmer to explicitly manage everything

50 BigData & NoSQL Tecnologie delle Basi di Dati M

What’s the point?

● Hide system-level details from the developers
No more race conditions, lock contention, etc.

● Separating the what from how
Developer specifies the computation that needs to be performed

Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

51 BigData & NoSQL Tecnologie delle Basi di Dati M

“Big Ideas” of large scale computing

● Scale “out”, not “up”
Limits of Symmetric Multi-Processing and large shared-memory
machines

● Hide system-level details from the application developer
Concurrent programs are difficult to reason about and harder to debug

● Move processing to the data
Cluster have limited bandwidth

● Process data sequentially, avoid random access
Seeks are expensive, disk throughput is reasonable

● Seamless scalability
From the mythical man-month to the tradable machine-hour

52 BigData & NoSQL Tecnologie delle Basi di Dati M

Typical Large-Data Problem

● Iterate over a large number of records

● Extract something of interest from each

● Shuffle and sort intermediate results

● Aggregate intermediate results

● Generate final output

Key idea: provide a functional abstraction for these

two operations

53 BigData & NoSQL Tecnologie delle Basi di Dati M

g g g g g

f f f f f MAP

FOLD

Roots in Functional Programming

● MAP takes a function f and applies it to every element in a list,

● FOLD iteratively applies a function g to aggregate results

54 BigData & NoSQL Tecnologie delle Basi di Dati M

Roots in Functional Programming

● The application of f to each item in a list can be parallelized
in a straightforward manner, since each functional application happens
in isolation

in a cluster, these operations can be distributed across many different
machines

● The fold operation has more restrictions on data locality
elements in the list must be "brought together" before the function g
can be applied

● However, many real-world applications do not require g to be applied
to all elements of the list

● If elements in the list can be divided into groups, the fold aggregations
can proceed in parallel

55 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce

● Basic data structure: key-value pairs

● Programmers specify two functions:
map (k1, v1) → [(k2, v2)]

reduce (k1, [v1]) → [(k2, v2)]

(k, v) denotes a (key, value) pair

[…] denotes a list

keys do not have to be unique: different pairs can have the same key

normally the keys of input elements are not relevant

● The execution framework handles everything else!

56 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce program

● A MapReduce program, referred to as a job, consists of:
code for Map and Reduce packaged together

configuration parameters (where the input lies, where the output should
be stored)

the input, stored on the underlying distributed file system

● Each MapReduce job is divided by the system into smaller units called tasks
Map tasks

Reduce tasks

● The output of MapReduce job is also stored on the underlying distributed
file system

57 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce process

● Some number of Map tasks each are given one or more chunks of data

● These Map tasks turn the chunk into a sequence of key-value pairs
The way key-value pairs are produced is determined by the code written
by the user for the Map function

● The key-value pairs from each Map task are collected by a master controller
and sorted and grouped by key (Shuffle and sort)

● The keys are divided among all the Reduce tasks, so all key-value pairs with
the same key wind up at the same Reduce task

● The Reduce tasks work on one key at a time, and combine all the values
associated with that key in some way

The way values are combined is determined by the code written by the
user for the Reduce function

● Output key-value pairs from each reducer are written persistently back onto
the distributed file system

● The output ends up in r files, where r is the number of reducers
the r files often serve as input to yet another MapReduce job

BigData & NoSQL Tecnologie delle Basi di Dati M 58

MapReduce process

59 BigData & NoSQL Tecnologie delle Basi di Dati M

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 6 r2 9 r3 19

An example

60 BigData & NoSQL Tecnologie delle Basi di Dati M

Example: Word Count

● Problem: counting the number of occurrences for each word in a collection
of documents

● Input: a repository of documents, each document is an element

● Map: reads a document and emits a sequence of key-value pairs where keys
are words of the documents and values are equal to 1:

(w1, 1), (w2, 1), . . . , (wn, 1)

● Grouping: groups by key and generates pairs of the form

(w1, [1, 1, . . . , 1]) , . . . , (wn, [1, 1, . . . , 1])

● Reduce: adds up all the values and emits:

(w1, k) , . . . , (wn, l)

● Output: (w,m) pairs, where w is a word that appears at least once among all
the input documents and m is the total number of occurrences of w among
all those documents

61 BigData & NoSQL Tecnologie delle Basi di Dati M

Implementation

BigData & NoSQL Tecnologie delle Basi di Dati M 62

Map(String docid, String text):

 for each word w in text:

 Emit(w, 1);

Reduce(String term, counts[]):

 int sum = 0;

 for each c in counts:

 sum += c;

 Emit(term, sum);

A Map in Java

public static class Map extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable uno = new IntWritable(1);

 private Text parola = new Text();

 public void map(LongWritable chiave, Text testo,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 String linea = testo.toString();

 StringTokenizer tokenizer = new StringTokenizer(linea);

 while (tokenizer.hasMoreTokens()) {

 parola.set(tokenizer.nextToken());

 output.collect(parola, uno);

 }

 }

}

63 BigData & NoSQL Tecnologie delle Basi di Dati M

A Reduce in Java

public static class Reduce extends MapReduceBase

 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(

 Text chiave,

 Iterator<IntWritable> valori,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter)

 throws IOException {

 int somma = 0;

 while (valori.hasNext()) {

 somma += valori.next().get();

 }

 output.collect(chiave, new IntWritable(somma));

 }

}

64 BigData & NoSQL Tecnologie delle Basi di Dati M

Another example: Word Length Count

● Problem: counting how many words of certain lengths exist in a collection
of documents

● Input: a repository of documents, each document is an element

● Map: reads a document and emits a sequence of key-value pairs where the
key is the length of a word and the value is the word itself:

(i,w1), . . . , (j,wn)

● Grouping: groups by key and generates pairs of the form

(1, [w1, . . . , wk]) , . . . , (n, [wr, . . . , ws])

● Reduce: counts the number of words in each list and emits:

(1, l) , . . . , (p, m)

● Output: (l,n) pairs, where l is a length and n is the total number of words of
length l in the input documents

65 BigData & NoSQL Tecnologie delle Basi di Dati M

Introducing combiners

● When the Reduce function is associative and commutative, we can push
some of what the reducers do to the Map tasks

● In this case we also apply a combiner to the Map function

● Grouping is still necessary!

● Advantages:
it reduces the amount of intermediate data

it reduces the network traffic

66 BigData & NoSQL Tecnologie delle Basi di Dati M

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 6 r2 9 r3 19
BigData & NoSQL Tecnologie delle Basi di Dati M 67

Example: Word Count with combiners

● Input: a repository of documents, each document is an element

● Map: reads a document and emits a sequence of key-value pairs where keys
are words of the documents and values are equal to 1:

(w1, 1), . . . , (wn, 1)

● Combiner: groups by key, adds up all the values and emits:

(w1, i), . . . , (wn, j)

● Grouping: groups by key and generates pairs of the form

(w1, [p, . . . , q]) , . . . , (wn, [r, . . . , s])

● Reduce: adds up all the values and emits:

(w1, k) , . . . , (wn, l)

● Output: (w,m) pairs, where w is a word that appears at least once among all
the input documents and m is the total number of occurrences of w among
all those documents.

68 BigData & NoSQL Tecnologie delle Basi di Dati M

Introducing partitioners

● We can also specify a partitioner that:
divides up the intermediate key space

assigns intermediate key-value pairs to reducers

n partitions n reducers

● The simplest partitioner assigns approximately the same number of keys to
each reducer.

● But partitioner only considers the key and ignores the value

● An imbalance in the amount of data associated with each key is relatively
common in many text processing applications

In texts the frequency of any word is inversely proportional to its rank in
the frequency table

The most frequent word will occur approximately twice as often as the
second most frequent word, three times as often as the third most
frequent word, etc.

69 BigData & NoSQL Tecnologie delle Basi di Dati M

Partitioners

● The user tells the map-reduce system how many Reduce tasks there will be,
say r.

● The master controller picks a hash function that applies to keys and
produces a bucket number from 0 to r − 1.

● Each key that is output by a Map task is hashed and its key-value pair is put
in one of r local files

● Local files are organized as a sequence of (key,list-of-values) pairs

● Each file is destined for one of the Reduce tasks.

● Optionally, users can specify their own hash function or other method for
assigning keys to Reduce tasks.

● However, whatever algorithm is used, each key is assigned to one and only
one Reduce task.

70 BigData & NoSQL Tecnologie delle Basi di Dati M

Reduce Tasks, Compute Nodes, and Skew

● If we want maximum parallelism, then we could use one Reduce task to execute
each single key and its associated value list and execute each Reduce task at a
different compute node, so they would all execute in parallel.

● Skew:
there is often significant variation in the lengths of the value lists for
different keys

different reducers take different amounts of time

significant difference in the amount of time each reduce task takes.

● Overhead and physical limitations:
There is overhead associated with each task we create

Often there are far more keys than there are compute nodes available.

● We can reduce the impact of skew by using fewer Reduce tasks.

● If keys are sent randomly to Reduce tasks, we can expect that there will be some
averaging of the total time required by the different Reduce tasks.

● We can further reduce the skew by using more Reduce tasks than compute nodes.
In that way, long Reduce tasks might occupy a compute node fully, while several
shorter Reduce tasks might run sequentially at a single compute node.

71 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce: the complete picture

● Programmers specify two functions:
map (k1, v1) → [(k2, v2)]

reduce (k2, [v2]) → [(k3, v3)]

All values with the same key are reduced together

● Usually, programmers also specify:
combine (k2, [v2]) → [(k3, v3)]

Mini-reducers that run after the map phase

Used as an optimization to reduce network traffic

partition (k2, number of partitions) → partition for k2

Divides up key space for parallel reduce operations

● The execution framework handles everything else…

72 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce runtime

● Important idea behind MapReduce is separating the what of distributed
processing from the how

● The developer submits the job to the submission node of a cluster

● The execution framework (the "runtime") takes care of everything else:
it transparently handles all aspects of distributed code execution

on clusters ranging from a single node to a few thousand nodes

73 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce at work

● Master-slave architecture

● Taking advantage of a library provided by a map-reduce system such as
Hadoop, the user program generates:

a Master controller process (the jobtracker in Hadoop)

some number of Worker processes at different compute nodes (the
tasktrackers in Hadoop).

● The jobtracker process coordinates all the jobs run on the system by
scheduling tasks

● The tasktrackers processes run tasks and send progress reports to the
jobtracker

● If a task fails, the jobtracker can reschedule it on a different tasktracker

74 BigData & NoSQL Tecnologie delle Basi di Dati M

Map-Reduce Execution

75 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce execution

● Normally, a Worker handles either Map tasks (a Map worker) or Reduce
tasks (a Reduce worker), but not both

● The Master:
creates a number of Map tasks and a number of Reduce tasks,
as selected by the user program.

assigns tasks to Workers

keeps track of the status of each Map and Reduce task (idle, executing
at a particular Worker, completed).

● The Map task creates a file for each Reduce task on the local disk
of the Worker that executes the Map task and informs the Master
of the location and sizes of each of these files

● When a Reduce task is assigned by the Master to a Worker,
that task is given all the files that form its input

● The Reduce task writes its output to a file of the distributed file system

BigData & NoSQL Tecnologie delle Basi di Dati M 76

MapReduce Job Run

● Four entities are involved
The client, which submits the MapReduce job

The jobtracker, which coordinates the job run

The tasktrackers, which run the tasks that the job has been split into

The distributed file system

77 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce “Runtime”

● Handles scheduling
Assigns workers to map and reduce tasks

● Handles “data distribution”
Get data to the workers

● Handles synchronization
Gathers, sorts, and shuffles intermediate data

● Handles errors and faults
Detects worker failures and restarts

● Everything happens on top of a distributed FS

78 BigData & NoSQL Tecnologie delle Basi di Dati M

Scheduling

● It is not uncommon for MapReduce jobs to have thousands of individual
tasks that need to be assigned to nodes in the cluster

● In large jobs, the total number of tasks may exceed the number of tasks that
can be run on the cluster concurrently, making it necessary for the
scheduler to maintain some sort of a task queue and to track the progress
of running tasks so that waiting tasks can be assigned to nodes as they
become available

79 BigData & NoSQL Tecnologie delle Basi di Dati M

How do we get data to the workers?

Compute Nodes

NAS

SAN (Storage Area Network)

What’s the problem here?

 (Network Attached Storage)

80 BigData & NoSQL Tecnologie delle Basi di Dati M

MapReduce Principles

● Data locality:
Data and workers must be close to each other

● Shared nothing architecture
Each node is independent and self-sufficient

81 BigData & NoSQL Tecnologie delle Basi di Dati M

Locality enforcement

● Don’t move data to workers… move workers to the data!

● Store data on the local disks of nodes in the cluster

● Start up the workers on the node that has the data local

● The tasks are created from the input splits in the shared file system
1 map per split + N reduces determined by the configuration

● If this is not possible (e.g., a node is already running too many tasks)
new tasks will be started elsewhere

the necessary data will be streamed over the network

● Optimization
prefer nodes that are on the same rack in the datacenter as the node
holding the relevant data block

inter-rack bandwidth is significantly less than intra-rack bandwidth!

82 BigData & NoSQL Tecnologie delle Basi di Dati M

Shared-nothing architecture

● Coordinating the process in a distributed computation is hard
How to distribute the load over the available nodes?

How to serialize the data for the transmission?

How to handle an unresponsive process?

● MapReduce's shared-nothing architecture means that tasks have no
dependence on one other

● Programmers do not worry about the distributed computation issues

● They need only to write two the Map and Reduce functions

83 BigData & NoSQL Tecnologie delle Basi di Dati M

Synchronization

● In general, synchronization refers to the mechanisms by which multiple
concurrently running processes “join up”, for example, to share
intermediate results or otherwise exchange state information

● In MapReduce, synchronization is accomplished by a “barrier” between the
map and reduce phases of processing

● Intermediate key-value pairs must be grouped by key, which is
accomplished by a large distributed sort involving all the nodes that
executed map tasks and all the nodes that will execute reduce tasks

● This necessarily involves copying intermediate data over the network, and
therefore the process is commonly known as “shuffle and sort”

● A MapReduce job with m mappers and r reducers involves up to m x r
distinct copy operations, since each mapper may have intermediate output
going to every reducer

84 BigData & NoSQL Tecnologie delle Basi di Dati M

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

MapReduce Execution

85 BigData & NoSQL Tecnologie delle Basi di Dati M

Coping With Node Failures

● The worst thing that can happen is that the compute node at which the
Master is executing fails

In this case, the entire map-reduce job must be restarted

● Other failures will be detected and managed by the Master, and the map-
reduce job will complete eventually

● Failure of a worker
the tasks assigned to this Worker will have to be redone

the Master:

sets the status of each failed tasks to idle

reschedules them on a Worker when one becomes available

86 BigData & NoSQL Tecnologie delle Basi di Dati M

Error and fault handling

● The MapReduce execution framework must accomplish all the tasks above
in a hostile environment, where errors and faults are the norm, not the
exception

● Since MapReduce was explicitly designed around low-end commodity
servers, the runtime must be especially resilient. In large clusters, disk
failures are common and RAM experiences more errors than one might
expect

● Datacenters suffer from both planned outages (e.g., system maintenance
and hardware upgrades) and unexpected outages (e.g., power failure,
connectivity loss, etc.)

● And that's just hardware. No software is bug-free…

● Furthermore, any sufficiently large dataset will contain corrupted data or
records that are mangled beyond a programmer's imagination, resulting in
errors that one would never think to check for or trap

87 BigData & NoSQL Tecnologie delle Basi di Dati M

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

88 BigData & NoSQL Tecnologie delle Basi di Dati M

Algorithms for MapReduce

89

● Need to take the algorithm and break it into filter/collect/aggregate steps
Filter/collect becomes part of the map function

Collect/aggregate becomes part of the reduce function

● Note that sometimes we may need multiple map/reduce stages – chains of
maps and reduces

● MapReduce is not a solution to every problem, not even every problem that
profitably can use many compute nodes operating in parallel!

● It makes sense only when:
files are very large and are rarely updated

we need to iterate over all the files to generate some interesting
property of the data in those files

● Let’s see some examples

BigData & NoSQL Tecnologie delle Basi di Dati M

Filtering algorithms

90

● Goal: Find lines/files/tuples with a particular characteristic

● Examples:
grep Web logs for requests to *dia.uniroma3.it/*

find in the Web logs the hostnames accessed by 192.168.127.1

locate all the files that contain the words ‘Apple’ and ‘Jobs’

● Generally: map does most of the work, reduce may simply be the identity

BigData & NoSQL Tecnologie delle Basi di Dati M

Aggregation algorithms

91

● Goal: Compute the maximum, the sum, the average, ..., over a set of values

● Examples:
count the number of requests to *.dia.uniroma3.it/*

find the most popular domain

average the number of requests per page per Web site

● Often: map may be simple or the identity

BigData & NoSQL Tecnologie delle Basi di Dati M

Union, intersections and joins

92

● Goal: Intersect multiple different inputs on some shared values
values can be equal, or meet a certain predicate

● Examples:
find all documents with the words “big” and/or “data” given an inverted
index

find all professors and students in common courses and return the pairs
<professor,student> for those cases

● Map generates a pair (k,e) for each element e in the input

● Reduce generates a sequence of pair [(k1,r1),..,(kn,rn)] for each k,[e1,..,ek]
in the input

BigData & NoSQL Tecnologie delle Basi di Dati M

Example: Relational Union and Intersection

93

● Union
Map: turn each input tuple t into a key-value pair (t, t)

Reduce: associated with each key t there will be either one or two
values

Produce output (t, t) in either case

● Intersection
Map: Turn each input tuple t into a key-value pair (t, t)

Reduce: Associated with each key t there will be either one or two
values

Produce output (t, t) only if there are two values

BigData & NoSQL Tecnologie delle Basi di Dati M

Example: Relational Join

94

● R(AB) JOIN S(BC)

● Map: for each tuple (a, b) of R, produce the pair (b, (R, a)), for each tuple (b,
c) of S, produce the pair (b, (S, c))

● Reduce: Each key value b will be associated with a list of pairs that are
either of the form (R, a) or (S, c), for each pair (R, a) and (S, c) in the list
generate a pair (k,(a, b, c)).

● Example:
R(AB)={(a,b),(c,b)} JOIN S(BC)={(b,e),(f,g)}

MAP: (b,(R,a)),(b,(R,c)),(b,(S,e)),(f,(S,g))

SHUFFLE AND SORT: (b,[(R,a),(R,c),(S,e)]) (f,[(S,g)])

REDUCE: (k1,(a,b,e)),(k2,(c,b,e))

BigData & NoSQL Tecnologie delle Basi di Dati M

Sorting

95

● Goal: Sort input

● Examples:
Return all the domains covered by Google’s index and the number of
pages in each, ordered by the number of pages

● The programming model does not support this per se,
but the implementations do

The Shuffle stage groups and orders!

● The map does nothing
If we have a single reducer, we will get sorted output

If we have multiple reducers, we can get partly sorted output but it’s
quite easy to write a last-pass file that merges all of the files

BigData & NoSQL Tecnologie delle Basi di Dati M

Why NoSQL?

● In the last thirty years relational databases have been the default choice
for serious data storage

● An architect starting a new project:
your only choice is likely to be which relational database to use

often not even that, if your company has a dominant vendor

● In the past, other proposals for database technology:
deductive databases in the 1980’s

object databases in the 1990’s

XML databases in the 2000’s

these alternatives never got anywhere!

96 BigData & NoSQL Tecnologie delle Basi di Dati M

The Value of Relational Databases

● Effective and efficient management of persistent data

● Concurrency control

● Data integration

● A standard data model

● A standard query language

97 BigData & NoSQL Tecnologie delle Basi di Dati M

Impedance Mismatch

● Difference between the persistent data model and the in-memory
data structures

98 BigData & NoSQL Tecnologie delle Basi di Dati M

A proposal to solve the problem (1990s)

● Databases that replicate the in-memory data structures to disk

● Object-oriented databases!

● Faded into obscurity in a few years..

● Solution emerged:
ORDBMS

object-relational mapping frameworks

BigData & NoSQL Tecnologie delle Basi di Dati M 99

Evolution of applications

● OO databases are dead. Why?
SQL provides an integration mechanism between applications

The database acts as an integration database

Multiple applications one database

● 2000s: a distinct shift to application databases (SOA)
Web services add more flexibility for the data structure being exchanged

richer data structures to reduce the number of round trips

nested records, lists, etc.

usually represented in XML or JSON

you get more freedom of choosing a database

a decoupling between your internal database and the services with which you talk to
the outside world

despite this freedom, however, it wasn’t apparent that application
databases led to a big rush to alternative data stores

Relational databases are familiar and usually work very well
(or, at least, well enough)

100 BigData & NoSQL Tecnologie delle Basi di Dati M

Attack of the Clusters

● A shift from scale up to scale out
with the explosion of data volume the computer architectures based on
cluster of commodity hardware emerged as the only solution

but relational databases are not designed to run (and do not work well)
on clusters!

● The mismatch between relational databases and clusters
led some organization to consider alternative solutions to data storage

● Google: BigTable

● Amazon: Dynamo

101 BigData & NoSQL Tecnologie delle Basi di Dati M

NoSQL

● Term appeared in the late 90s
open-source relational database [Strozzi NoSQL]

tables as ASCII files, without SQL

● Current interpretation
June 11, 2009: meetup in San Francisco

open-source, distributed, non-relational DBs

Hashtag chosen: #NoSQL

Main features:

Not using SQL and the relational model

Open-source projects (mostly)

Running on clusters

Schema-less

However, no accepted precise definitions

● Most people say that NoSQL means "Not Only SQL"

102 BigData & NoSQL Tecnologie delle Basi di Dati M

Key Points

● Relational databases have been a successful technology for twenty years,
providing persistence, concurrency control, and an integration mechanism

● Application developers have been frustrated with the impedance mismatch
between the relational model and the in-memory data structures

● There is a movement away from using databases as integration points towards
encapsulating databases within applications and integrating through services

● The vital factor for a change in data storage was the need to support large
volumes of data by running on clusters

Relational databases are not designed to run efficiently on clusters

● NoSQL is an accidental neologism: There is no prescriptive definition

● All you can make is an observation of common characteristics:
Not using the relational model

Running well on clusters

Open-source

Built for the 21st century web estates

Schema-less

103 BigData & NoSQL Tecnologie delle Basi di Dati M

NoSQL Data Models

● A data model is a set of constructs for representing the information
Relational model: tables, columns and rows

● Storage model: how the DBMS stores and manipulates the data internally

● A data model is usually independent of the storage model

● Data models for NoSQL systems:
aggregate models

key-value

document

column-family

graph-based models

104 BigData & NoSQL Tecnologie delle Basi di Dati M

Aggregates

● Data as units that have a complex structure
more structure than just a set of tuples

example:

complex record with: simple fields, arrays, records nested inside

● Aggregate in Domain-Driven Design
a collection of related objects that we treat as a unit

a unit for data manipulation and management of consistency

● Advantages of aggregates:
easier for application programmers to work with

easier for database systems to handle operating on a cluster

105 BigData & NoSQL Tecnologie delle Basi di Dati M

Example

106 BigData & NoSQL Tecnologie delle Basi di Dati M

Relational implementation

107 BigData & NoSQL Tecnologie delle Basi di Dati M

Aggregation

108 BigData & NoSQL Tecnologie delle Basi di Dati M

Aggregate representation

109 BigData & NoSQL Tecnologie delle Basi di Dati M

Aggregate implementation

110 BigData & NoSQL Tecnologie delle Basi di Dati M

Another possible solution

111 BigData & NoSQL Tecnologie delle Basi di Dati M

Aggregate implementation (2)

112 BigData & NoSQL Tecnologie delle Basi di Dati M

Design strategy

● No universal answer for how to draw aggregate boundaries

● It depends entirely on how you tend to manipulate data!
Accesses on a single order at a time: first solution

Accesses on customers with all orders: second solution

● Context-specific
some applications will prefer one or the other

even within a single system

● Focus on the unit of interaction with the data storage

● Pros: it helps greatly with running on a cluster
data will be manipulated together, and thus should live on the same
node!

● Cons: an aggregate structure may help with some data interactions,
but be an obstacle for others

113 BigData & NoSQL Tecnologie delle Basi di Dati M

Transactions

● Relational databases have ACID transactions

● Aggregate-oriented databases:
don’t have ACID transactions that span multiple aggregates

they support atomic manipulation of a single aggregate at a time

● Part of the consideration for deciding how to aggregate data

114 BigData & NoSQL Tecnologie delle Basi di Dati M

Key-Value and Document Data Models

● Strongly aggregate-oriented
Lots of aggregates

Each aggregate has a key is used to get data

● Key-value database
The aggregate is opaque to the database

● Document database
A structure in the aggregate

115 BigData & NoSQL Tecnologie delle Basi di Dati M

Key-Value vs. Document stores

● Key-value database
A key plus a big BLOB of mostly meaningless bits

We can store whatever we like in the aggregate

We can only access an aggregate by lookup based on its key

● Document database
A key plus a structured aggregate

More flexibility in access

we can submit queries to the database based on the fields in the aggregate

we can retrieve part of the aggregate rather than the whole thing

Indices based on the contents of the aggregate

116 BigData & NoSQL Tecnologie delle Basi di Dati M

Column-Family Stores

● A two-level aggregate structure:
A key and a row aggregate

A row aggregate is a group of columns

● Bigtable, HBase, Cassandra

117 BigData & NoSQL Tecnologie delle Basi di Dati M

Properties of Column-Family Stores

● Operations also allow picking out a particular column
get('1234', 'name')

● Each column:
has to be part of a single column family

acts as unit for access

● You can add any column to any row, and rows can have very different
columns

● You can model a list of items by making each item a separate column

● Two ways to look at data:
Row-oriented

Each row is an aggregate

Column families represent useful chunks of data within that aggregate

Column-oriented:

Each column family defines a record type

Row as the join of records in all column families

 118 BigData & NoSQL Tecnologie delle Basi di Dati M

Cassandra

● Skinny row
few columns with the same columns used by many different rows

the column family defines a record type

each row is a record and each column is a field

● Wide row
many columns (perhaps thousands)

rows having very different columns

models a list, with each column being one element in that list

● A column family can contain both field-like columns and list-like columns

119 BigData & NoSQL Tecnologie delle Basi di Dati M

Key Points

● An aggregate is a collection of data that we interact with as a unit.

● Aggregates form the boundaries for ACID operations with the database

● Key-value, document, and column-family databases can all be seen as forms
of aggregate-oriented database

● Aggregates make it easier for the database to manage data storage over
clusters

● Aggregate-oriented databases work best when most data interaction is
done with the same aggregate

● Aggregate-ignorant databases are better when interactions use data
organized in many different formations

120 BigData & NoSQL Tecnologie delle Basi di Dati M

Relationships

● Relationship between different aggregates:
Put the ID of one aggregate within the data of the other

Join: write a program that uses the ID to link data

The database is ignorant of the relationship in the data

121 BigData & NoSQL Tecnologie delle Basi di Dati M

Relationship management

● Many NoSQL databases provide ways to make relationships visible to the
database

Document stores makes use of indexes

Riak (key-value store) allows you to put link information in metadata

● But what about updates?
Aggregate-oriented databases treat the aggregate as the unit of data-
retrieval

Atomicity is only supported within the contents of a single aggregate

Updates over multiple aggregates at once is a programmer's
responsibility!

In contrast, relational databases provide ACID guarantees
while altering many rows through transactions

122 BigData & NoSQL Tecnologie delle Basi di Dati M

Graph Databases

● Graph databases are motivated by a different frustration with relational
databases

Complex relationships require complex join

● Goal:
Capture data consisting of complex relationships

Data naturally modelled as graphs

Examples: Social networks, Web data, product preferences

123 BigData & NoSQL Tecnologie delle Basi di Dati M

A graph database

Possible query: “find the books in the Databases category that are written by
someone whom a friend of mine likes”

124 BigData & NoSQL Tecnologie delle Basi di Dati M

Data model of graph databases

● Basic characteristic: nodes connected by edges (also called arcs)

● Beyond this: a lot of variation in data models
FlockDB is simply nodes and edges with no mechanism for additional
attributes

Neo4J stores Java objects to nodes and edges in a schema-less fashion

Infinite Graph stores Java objects, which are subclasses of built-in
types, as nodes and edges

● Queries
Navigation through the network of edges

You do need a starting place

Nodes can be indexed by an attribute such as ID

125 BigData & NoSQL Tecnologie delle Basi di Dati M

Graph vs. Relational databases

● Relational databases
implement relationships using foreign keys

joins require to navigate around and can get quite expensive

● Graph databases
make traversal along the relationships very cheap

performance is better for highly connected data

shift most of the work from query time to insert time

good when querying performance is more important than insert speed

126 BigData & NoSQL Tecnologie delle Basi di Dati M

Graph vs. Aggregate-oriented databases

● Very different data models

● Aggregate-oriented databases
distributed across clusters

simple query languages

no ACID guarantees

● Graph databases
more likely to run on a single server

graph-based query languages

transactions maintain consistency over multiple nodes and edges

127 BigData & NoSQL Tecnologie delle Basi di Dati M

Schema-less Databases

● No fixed schema:
key-value store allows you to store any data you like under a key

document databases make no restrictions on the structure of the
documents you store

column-family databases allow you to store any data under any column
you like

graph databases allow you to freely add new edges and freely add
properties to nodes and edges as you wish

128 BigData & NoSQL Tecnologie delle Basi di Dati M

Pros and cons of schema-less data

● Pros:
More freedom and flexibility
you can easily change your data organization
you can deal with non-uniform data

● Cons:
A program that accesses data:

almost always relies on some form of implicit schema
it assumes that certain fields are present
carry data with a certain meaning

The implicit schema is shifted into the application code that accesses
data

To understand what data is present you have look at the application code

The schema cannot be used to:
decide how to store and retrieve data efficiently
ensure data consistency

Problems if multiple applications, developed by different people,
access the same database

● Relational schemas can be changed at any time with standard SQL
commands!

129 BigData & NoSQL Tecnologie delle Basi di Dati M

Materialized Views

● A relational view is a table defined by computation over the base tables

● Materialized views: computed in advance and cached on disk

● NoSQL databases:
do not have views

have pre-computed and cached queries usually called
“materialized view”

● Strategies to building a materialized view
Eager approach

the materialized view is updated at the same time of the base data

good when you have more frequent reads than writes

Detached approach

batch jobs update the materialized views at regular intervals

good when you don’t want to pay an overhead on each update

● Materialized views can be used within the same aggregate

130 BigData & NoSQL Tecnologie delle Basi di Dati M

Data Accesses in key-value store

The application can read all customer’s information by using the key

131 BigData & NoSQL Tecnologie delle Basi di Dati M

Splitting aggregates

We can now find the orders independently from the Customer, and with the
orderID reference in the Customer we can find all Orders for the Customer

132 BigData & NoSQL Tecnologie delle Basi di Dati M

Aggregates for analytics

● An aggregate update may store which Orders have a given Product in them

● Useful for Real Time Analytic

133 BigData & NoSQL Tecnologie delle Basi di Dati M

Data Accesses in document stores

● We can query inside
documents: removing
references is possible

● We do not need to update
the Customer object when
new orders are placed by
the Customer

134 BigData & NoSQL Tecnologie delle Basi di Dati M

Data Accesses in column-family stores

● The columns are ordered

● We can choose columns that are
frequently used so that they are
fetched first

● Splitting data in different column-
family families can improve
performance

135 BigData & NoSQL Tecnologie delle Basi di Dati M

Data Accesses in graph databases

● Each node has independent
relationships with other
nodes

● The relationships have
names

● Relationship names let you
traverse the graph

136 BigData & NoSQL Tecnologie delle Basi di Dati M

137 BigData & NoSQL Tecnologie delle Basi di Dati M

Key Points

● Aggregate-oriented databases make inter-aggregate relationships
more difficult to handle than intra-aggregate relationships

● Graph databases organize data into node and edge graphs
They work best for data that has complex relationship structures

● Schema-less databases allow you to freely add fields to records, but there is
usually an implicit schema expected by users of the data

● Aggregate-oriented databases often compute materialized views to provide
data organized differently from their primary aggregates

This is often done with map-reduce computations

138 BigData & NoSQL Tecnologie delle Basi di Dati M

Data distribution

● NoSQL systems: data distributed over large clusters

● Aggregate is a natural unit to use for data distribution

● Data distribution models:
Single server (is an option for some applications)

Multiple servers

● Orthogonal aspects of data distribution:
Sharding: different data on different nodes

Replication: the same data copied over multiple nodes

master-slave

peer-to-peer

139 BigData & NoSQL Tecnologie delle Basi di Dati M

Sharding

● Different parts of the data onto different servers
Horizontal scalability

Ideal case: different users all talking to different server nodes

Data accessed together on the same node ̶ aggregate unit!

● Pros: it can improve both reads and writes

● Cons: Clusters use less reliable machines ̶ resilience decreases

140 BigData & NoSQL Tecnologie delle Basi di Dati M

Improving performance

Main rules of sharding:

1. Place the data close to where it is accessed
Orders for Boston: data in your eastern US data center

2. Try to keep the load even
All nodes should get equal amounts of the load

3. Put together aggregates that may be read in sequence
Same order, same node

● Many NoSQL databases offer auto-sharding
the database takes on the responsibility of sharding

141 BigData & NoSQL Tecnologie delle Basi di Dati M

Master-Slave Replication

● Master
is the authoritative
source for the data

is responsible for
processing any updates
to that data

can be appointed
manually or
automatically

● Slaves
A replication process
synchronizes the slaves
with the master

After a failure of the
master, a slave can be
appointed as new master
very quickly

142 BigData & NoSQL Tecnologie delle Basi di Dati M

Pros and cons of Master-Slave Replication

● Pros
More read requests:

Add more slave nodes

Ensure that all read requests are routed to the slaves

Should the master fail, the slaves can still handle read requests

Good for datasets with a read-intensive dataset

● Cons
The master is a bottleneck

Limited by its ability to process updates and to pass those updates on

Its failure does eliminate the ability to handle writes until:

the master is restored or

a new master is appointed

Inconsistency due to slow propagation of changes to the slaves

Bad for datasets with heavy write traffic

143 BigData & NoSQL Tecnologie delle Basi di Dati M

Peer-to-Peer Replication

● All the replicas have
equal weight, they can
all accept writes

● The loss of any of them
doesn’t prevent access
to the data store

BigData & NoSQL Tecnologie delle Basi di Dati M 144

Pros and cons of peer-to-peer replication

● Pros:
you can ride over node failures without losing access to data

you can easily add nodes to improve your performance

● Cons:
Inconsistency!

Slow propagation of changes to copies on different nodes

Inconsistencies on read lead to problems but are relatively transient

Two people can update different copies of the same record stored on different nodes
at the same time - a write-write conflict.

Inconsistent writes are forever

145 BigData & NoSQL Tecnologie delle Basi di Dati M

Sharding and Replication on MS

● We have multiple masters, but each data only has a single master

● Two schemes:
A node can be a master for some data and slaves for others

Nodes are dedicated for master or slave duties

BigData & NoSQL Tecnologie delle Basi di Dati M 146

Sharding and Replication on P2P

● Usually each shard is present on three nodes

● A common strategy for column-family databases

BigData & NoSQL Tecnologie delle Basi di Dati M 147

Key points

● There are two styles of distributing data:
Sharding distributes different data across multiple servers

each server acts as the single source for a subset of data

Replication copies data across multiple servers

each bit of data can be found in multiple places

● A system may use either or both techniques

● Replication comes in two forms:
Master-slave replication makes one node the authoritative copy
that handles writes while slaves synchronize with the master
and may handle reads

Peer-to-peer replication allows writes to any node

The nodes coordinate to synchronize their copies of the data

● Master-slave replication reduces the chance of update conflicts

● Peer-to-peer replication avoids loading all writes onto a single point
of failure

148 BigData & NoSQL Tecnologie delle Basi di Dati M

Consistency

● Biggest change from a centralized relational database to a cluster-oriented
NoSQL

Relational databases: strong consistency

NoSQL systems: mostly eventual consistency

149 BigData & NoSQL Tecnologie delle Basi di Dati M

Update Consistency

● Write-write conflict: two people updating the same data item at the same
time

● If the server serialize them (sequential consistency):
One is applied and immediately overwritten by the other

Lost update

● Solutions:
Pessimistic approach

Prevent conflicts from occurring

Usually implemented with write locks managed by the system

Optimistic approach

Let conflicts occur, but detects them and takes action to sort them out

Approaches:

conditional updates: test the value just before updating

save both updates: record that they are in conflict and then merge them

● Do not work if there is more than one server (peer-to-peer replication)

150 BigData & NoSQL Tecnologie delle Basi di Dati M

Pessimistic vs optimistic approach

● Concurrency involves a fundamental tradeoff between:
safety (avoiding errors such as update conflicts), and

liveness (responding quickly to clients).

● Pessimistic approaches often:
severely degrade the responsiveness of a system

leads to deadlocks, which are hard to prevent and debug

151 BigData & NoSQL Tecnologie delle Basi di Dati M

Read Consistency (or read-write conflict)

● A read in the middle of two logically-related writes

● Logical consistency: no read or read-write conflicts

152 BigData & NoSQL Tecnologie delle Basi di Dati M

Transactions on NoSQL databases

● Graph databases tend to support ACID transactions

● Aggregate-oriented NoSQL database:
Support atomic updates, but only within a single aggregate

To avoid inconsistency: orders in a single aggregate

Update over multiple aggregates: possible inconsistent reads

Inconsistency window: length of time an inconsistency is present

● Amazon’s documentation:
“inconsistency window for SimpleDB
service is usually less than a second”

BigData & NoSQL Tecnologie delle Basi di Dati M 153

Replication consistency

● Replication is another source of inconsistency

● Eventual consistency: at any time nodes may have replication
inconsistencies but, if there are no further updates, eventually all nodes
will be updated to the same value

● Stale data: out of date

BigData & NoSQL Tecnologie delle Basi di Dati M 154

Logical and eventual consistency

155

● Eventual consistency is independent from logical consistency
but replication can lengthen the inconsistency window

Two updates on the master performed in rapid succession

Delays in networking can lengthen the inconsistency on a slave

● Consequences of inconsistency windows
different people see different data at the same time: usually tolerated

read-your-writes consistency: should be guaranteed

● Session consistency: within a user’s session
Sticky session: tied to one node (session affinity)

Version stamps: every interaction latest version stamp

BigData & NoSQL Tecnologie delle Basi di Dati M

Version stamps

156

● Help you detect concurrency conflicts

● When you read data, then update it, you can check the version stamp
to ensure nobody updated the data between your read and write

● Version stamps can be implemented using counters, GUIDs (a large random
number that’s guaranteed to be unique), content hashes, timestamps,
or a combination of these

● With distributed systems, a vector of version stamps (a set of counters,
one for each node) allows you to detect when different nodes
have conflicting updates

BigData & NoSQL Tecnologie delle Basi di Dati M

“Given the properties of Consistency, Availability, and Partition tolerance,
you can only get two”

The CAP Theorem

157 BigData & NoSQL Tecnologie delle Basi di Dati M

● Why you may need to relax consistency

● Proposed by Eric Brewer in 2000

● Formal proof by Seth Gilbert and Nancy Lynch in 2002

● Consistency: all people see the same data at the same time

● Availability: if you can talk to a node in the cluster, it can read and write
data

● Partition tolerance: the cluster can survive communication breakages that
separate the cluster into partitions unable to communicate with each other

The CAP Theorem

158 BigData & NoSQL Tecnologie delle Basi di Dati M

Network partition

159 BigData & NoSQL Tecnologie delle Basi di Dati M

CA systems

160

● A single-server system is the obvious example of a CA system

● CA cluster: if a partition occurs, all the nodes would go down
A failed, unresponsive node doesn’t infer a lack of CAP availability

● A system that suffer partitions: tradeoff consistency vs. availability
Give up to some consistency to get some availability

BigData & NoSQL Tecnologie delle Basi di Dati M

An example

161

● Ann is trying to book a room of the Ace Hotel in New York on a node located
in London of a booking system

● Pathin is trying to do the same on a node located in Mumbai

● The booking system uses a peer-to-peer distribution

● There is only a room available

● The network link breaks

BigData & NoSQL Tecnologie delle Basi di Dati M

Possible solutions

162

● CP: Neither user can book any hotel room, sacrificing availability

● caP: Designate Mumbai node as the master for Ace hotel
Pathin can make the reservation

Ann can see the inconsistent room information

Ann cannot book the room

● AP: both nodes accept the hotel reservation
Overbooking!

● These situations are closely tied to the domain
Financial exchanges? Blogs? Shopping charts?

● Issues:
How tolerant you are of stale reads

How long the inconsistency window can be

● BASE approach (Basically Available, Soft state, Eventual consistency)

BigData & NoSQL Tecnologie delle Basi di Dati M

Durability

● You may want to trade off durability
for higher performance

Main memory database:
if the server crashes, any updates since
the last flush will be lost

Keeping user-session states
as temporary information

Capturing telemetric data
from physical devices

● Replication durability
Occurs when a node processes an
update

But fails before that update is replicated
to the other nodes

BigData & NoSQL Tecnologie delle Basi di Dati M 163

Quorums

164

● How many nodes need to be involved to get strong consistency?
Write quorum: W > N/2

The number of nodes participating in the write (W) must be more than
the half the replication factor (N)

● How many nodes you need to contact to be sure you have the most up-to-
date change?

Read quorum: R + W > N

● In a master-slave distribution one R/W is enough

● A replication factor of 3 is usually enough to have good resilience

BigData & NoSQL Tecnologie delle Basi di Dati M

Key points

165

● Write-write conflicts occur when two clients try to write the same data at the same time
● Read-write conflicts occur when one client reads inconsistent data in the middle of

another client’s write
● Pessimistic approaches lock data records to prevent conflicts
● Optimistic approaches detect conflicts and fix them
● Distributed systems (with replicas) see read-write conflicts due to some nodes having

received updates while other nodes have not
● Eventual consistency means that at some point the system will become consistent once

all the writes have propagated to all the nodes
● Clients usually want read-your-writes consistency, which means a client can write and

then immediately read the new value
This can be difficult if the read and the write happen on different nodes

● To get good consistency, you need to involve many nodes in data operations, but this
increases latency

So you often have to trade off consistency versus latency

● The CAP theorem states that if you get a network partition, you have to trade off
availability of data versus consistency

● Durability can also be traded off against latency, particularly if you want to survive
failures with replicated data

● You do not need to contact all replicants to preserve strong consistency with replication;
you just need a large enough quorum

BigData & NoSQL Tecnologie delle Basi di Dati M

